The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance.

نویسندگان

  • P Priault
  • C Fresneau
  • G Noctor
  • R De Paepe
  • G Cornic
  • P Streb
چکیده

The CMSII mutant of Nicotiana sylvestris, which lacks a functional mitochondrial complex I, was used to investigate chloroplast-mitochondria interactions in light acclimation of photosynthetic carbon assimilation. CMSII and wild-type (WT) plants were grown at 80 micromol m(-2) s(-1) photosynthetic active radiation (PAR; 80) and 350 micromol m(-2) s(-1) PAR (350). Carbon assimilation at saturating PFD was markedly higher in WT 350 leaves as compared with WT 80 leaves, but was similar in CMS 80 and CMS 350 leaves, suggesting that the mutant is unable to adjust photosynthesis to higher growth irradiance. WT 350 leaves showed several general characteristic light acclimation responses [increases in leaf specific area (LSA), total chlorophyll content, and chlorophyll a/b ratio, and a higher light compensation point]. In contrast, a similar chlorophyll content and chlorophyll a/b ratio were measured for both CMS 80 and CMS 350 leaves, while LSA and the light compensation point acclimated as in the WT. The failure of CMSII to adjust photosynthesis to growth PFD did not result from lower quantum efficiency of PSII, lower whole-chain electron transport rates (ETRs), or lower ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) and sucrose phosphate synthase (SPS) capacities. Excess ETR not used for carbon assimilation was even higher in CMS 350 than in WT 350. Since photochemical fluorescence quenching and the initial activity of NADP malate dehydrogenase (NADP-MDH) were identical in WT 350 and CMS 350 leaves but the activation state of NADP-MDH was different, redox signals from primary ETR are not involved in the signal transduction of light acclimation, while a contribution of stromal redox state cannot be excluded. When mature plants were transferred between 350 and 80 conditions, the mutant showed acclimatory tendencies, although adjustments were not as rapid or as marked as in the WT, and the response of the initial activities of Rubisco and NADP-MDH was impaired or altered. Initial activities of Rubisco and SPS at limiting concentration were also affected in CMS 350 as compared with WT plants when compared at growth irradiance or after in situ activation at 1000 micromol m(-2) s(-1) PAR. The data demonstrate that chloroplast-mitochondria interactions are important in light acclimation, and modulation of the activation state of key photosynthetic enzymes could be an important mechanism in this cross-talk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion.

The cytoplasmic male sterile II (CMSII) mutant lacking complex I of the mitochondrial electron transport chain has a lower photosynthetic activity but exhibits higher rates of excess electron transport than the wild type (WT) when grown at high light intensity. In order to examine the cause of the lower photosynthetic activity and to determine whether excess electrons are consumed by photorespi...

متن کامل

Organization and expression of the mitochondrial genome in the Nicotiana sylvestris CMSII mutant.

Previous analyses suggested that the Nicotiana sylvestris CMSII mutant carried a large deletion in its mitochondrial genome. Here, we show by cosmid mapping that the deletion is 60 kb in length and contains several mitochondrial genes or ORFs, including the complex I nad7 gene. However, due to the presence of large duplications in the progenitor mitochondrial genome, the only unique gene that a...

متن کامل

Effects of drought stress and subsequent rewatering on photosynthetic and respiratory pathways in Nicotiana sylvestris wild type and the mitochondrial complex I-deficient CMSII mutant

The interaction of photosynthesis and respiration has been studied in vivo under conditions of limited water supply and after consecutive rewatering. The role of the alternative (v(alt)) and cytochrome (v(cyt)) pathways on drought stress-induced suppression of photosynthesis and during photosynthetic recovery was examined in the Nicotiana sylvestris wild type (WT) and the complex I-deficient CM...

متن کامل

Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris

Mitochondrial electron transport pathways exert effects on carbon-nitrogen (C/N) relationships. To examine whether mitochondria-N interactions also influence plant growth and development, we explored the responses of roots and shoots to external N supply in wild-type (WT) Nicotiana sylvestris and the cytoplasmic male sterile II (CMSII) mutant, which has a N-rich phenotype. Root architecture in ...

متن کامل

Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism.

Primary leaf metabolism requires the co-ordinated production and use of carbon skeletons and redox equivalents in several subcellular compartments. The role of the mitochondria in leaf metabolism has long been recognized, but it is only recently that molecular tools and mutants have become available to evaluate cause-and-effect relationships. In particular, analysis of the CMSII mutant of Nicot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 57 9  شماره 

صفحات  -

تاریخ انتشار 2006